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Algorithms	for	NLP



Maximum	Entropy	Models



Improving	on	N-Grams?
§ N-grams	don’t	combine	multiple	sources	of	evidence	well

§ Here:
§ “the”	gives	syntactic	constraint
§ “demolition”	gives	semantic	constraint
§ Unlikely	the	interaction	between	these	two	has	been	densely	

observed	in	this	specific	n-gram

§ We’d	like	a	model	that	can	be	more	statistically	efficient

P(construction	|	After	the	demolition	was	completed,	the)



Some	Definitions

INPUTS

CANDIDATES

FEATURE 
VECTORS

close	the	____

CANDIDATE 
SET

y	occurs	in	x

“close”	in	x Ù y=“door”
x-1=“the”	Ù y=“door”

TRUE 
OUTPUTS

{door,	table,	…}

table

door

x-1=“the”	Ù y=“table”



More	Features,	Less	Interaction

§ N-Grams

§ Skips

§ Lemmas

§ Caching

x	=	closing	the	____,	y	=	doors

x-1=“the”	Ù y=“doors”

x-2=“closing”	Ù y=“doors”

x-2=“close”	Ù y=“door”

y	occurs	in	x



Data: Feature	Impact

Features Train	Perplexity Test	Perplexity

3 gram indicators 241 350

1-3	grams 126 172

1-3	grams	+	skips 101 164



Exponential Form
§ Weights Features

§ Linear	score

§ Unnormalized probability

§ Probability



Likelihood	Objective
§ Model	form:

§ Log-likelihood	of	training	data
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Training



History	of	Training

§ 1990’s:	Specialized	methods	(e.g.	iterative	
scaling)

§ 2000’s:	General-purpose	methods	(e.g.	
conjugate	gradient)

§ 2010’s:	Online	methods	(e.g.	stochastic	
gradient)



What	Does	LL	Look	Like?
§ Example

§ Data:	xxxy
§ Two	outcomes,	x	and	y
§ One	indicator	for	each
§ Likelihood



Convex	Optimization
§ The	maxent objective	is	an	unconstrained	convex	problem

§ One	optimal	value*,	gradients	point	the	way



Gradients

Count	of	features	under	
target	labels

Expected	count	of	features	
under	model	predicted	label	
distribution



Gradient	Ascent
§ The	maxent objective	is	an	unconstrained	optimization	

problem

§ Gradient	Ascent
§ Basic	idea:	move	uphill	from	current	guess
§ Gradient	ascent	/	descent	follows	the	gradient	incrementally
§ At	local	optimum,	derivative	vector	is	zero
§ Will	converge	if	step	sizes	are	small	enough,	but	not	efficient
§ All	we	need	is	to	be	able	to	evaluate	the	function	and	its	derivative



(Quasi)-Newton Methods
§ 2nd-Order	methods:	repeatedly	create	a	quadratic	

approximation	and	solve	it

§ E.g.	LBFGS,	which	tracks	derivative	to	approximate	(inverse)	
Hessian



Regularization



Regularization Methods

§ Early	stopping

§ L2:	L(w)-|w|22

§ L1:	L(w)-|w|



Regularization	Effects

§ Early	stopping:	don’t	do	this

§ L2:	weights	stay	small	but	non-zero

§ L1:	many	weights	driven	to	zero
§ Good	for	sparsity
§ Usually	bad	for	accuracy	for	NLP



Scaling



Why	is Scaling	Hard?

§ Big	normalization	terms

§ Lots	of	data	points



Hierarchical	Prediction
§ Hierarchical	prediction /	softmax [Mikolov et	al	2013]

§ Noise-Contrastive	Estimation	[Mnih,	2013]

§ Self-Normalization	[Devlin,	2014]

Image:	ayende.com



Stochastic	Gradient
§ View	the	gradient	as	an	average	over	data	points

§ Stochastic	gradient:	take	a	step	each	example	(or	mini-batch)

§ Substantial	improvements	exist,	e.g.	AdaGrad (Duchi,	11)



Log-linear	Parameterization
§ Model	form:

§ Learn	by	following	gradient	of	training	LL:
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Mixed Interpolation
§ But	can’t	we	just	interpolate:

§ P(w|most recent	words)
§ P(w|skip contexts)
§ P(w|caching)
§ …

§ Yes,	and	people	do	(well,	did)
§ But	additive	combination	tends	to	flatten	
distributions,	not	zero	out	candidates



Neural	LMs



Neural LMs

Image:	(Bengio et	al,	03)



Neural vs	Maxent
§ Maxent LM

§ Simple	Neural	LM

� nonlinear,	e.g.	tanh
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Neural LM Example

x-1= thex-2	= closing

Cclosing Cthe1.2		7.4		… –3.3		1.1		…

0.1

Aman Adoor Adoors …

2.3 1.5 …

-0.99 …h = �
�
B>C

x

�

P (y|x) / e

(A>h)
P (y|x) / e

(A>h)



Neural LMs

Image:	(Bengio et	al,	03)



Decision Trees	/	Forests

§ Decision	trees?
§ Good	for	non-linear	decision	problems
§ Random	forests	can	improve	further	[Xu	and	Jelinek,	2004]
§ Paths	to	leaves	basically	learn	conjunctions
§ General	contrast	between	DTs	and	linear	models

Prev Word?

…
last	verb?



Speech	Signals



n Frequency	gives	pitch;	amplitude	gives	volume

n Frequencies	at	each	time	slice	processed	into	observation	vectors

s             p       ee         ch           l     a          b

am
pl

itu
de

Speech	in	a	Slide

……………………………………………..x12x13x12x14x14………..



Articulation



Text	from	Ohala,	Sept	2001,	from	Sharon	Rose	slide

Sagittal section	of	the	vocal	tract	(Techmer 1880)

Nasal	cavity

Pharynx

Vocal	folds	(in	the	larynx)

Trachea

Lungs

Articulatory	System

Oral	cavity



Space	of	Phonemes

§ Standard	international	phonetic	alphabet	(IPA)	chart	of	consonants



Place



Places	of	Articulation

labial

dental
alveolar post-alveolar/palatal

velar
uvular

pharyngeal

laryngeal/glottal

Figure	thanks	to	Jennifer	Venditti



Labial	place

bilabial

labiodental

Figure	thanks	to	Jennifer	Venditti

Bilabial:
p,	b,	m

Labiodental:
f,	v



Coronal	place

dental
alveolar post-alveolar/palatal

Figure	thanks	to	Jennifer	Venditti

Dental:
th/dh

Alveolar:
t/d/s/z/l/n

Post:
sh/zh/y



Dorsal	Place

velar
uvular

pharyngeal

Figure	thanks	to	Jennifer	Venditti

Velar:
k/g/ng



Space	of	Phonemes

§ Standard	international	phonetic	alphabet	(IPA)	chart	of	consonants



Manner



Manner	of	Articulation
§ In	addition	to	varying	by	place,	sounds	vary	by	

manner

§ Stop:	complete	closure	of	articulators,	no	air	
escapes	via	mouth
§ Oral	stop:	palate	is	raised	(p,	t,	k,	b,	d,	g)
§ Nasal	stop:	oral	closure,	but	palate	is	lowered	(m,	

n,	ng)

§ Fricatives:	substantial	closure,	turbulent:	(f,	v,	s,	z)

§ Approximants:	slight	closure,	sonorant:	(l,	r,	w)

§ Vowels:	no	closure,	sonorant:	(i,	e,	a)



Space	of	Phonemes

§ Standard	international	phonetic	alphabet	(IPA)	chart	of	consonants



Vowels



Vowel	Space



Acoustics



“She	just	had	a	baby”

§ What	can	we	learn	from	a	wavefile?
§ No	gaps	between	words	(!)
§ Vowels	are	voiced,	long,	loud
§ Length	in	time	=	length	in	space	in	waveform	picture
§ Voicing:	regular	peaks	in	amplitude
§ When	stops	closed:	no	peaks,	silence
§ Peaks	=	voicing:	.46	to	.58	(vowel	[iy],	from	second	.65	to	.74	(vowel	[ax])	
and	so	on

§ Silence	of	stop	closure	(1.06	to	1.08	for	first	[b],	or	1.26	to	1.28	for	second	
[b])

§ Fricatives	like	[sh]:	intense	irregular	pattern;	see	.33	to	.46



Time-Domain	Information

bad

pad

spat

pat

Example	from	Ladefoged



Simple	Periodic	Waves	of	Sound

Time (s)
0 0.02

œ0.99

0.99

0

• Y	axis:	Amplitude	=	amount	of	air	pressure	at	that	point	in	time
• Zero	is	normal	air	pressure,	negative	is	rarefaction

• X	axis:	Time.
• Frequency	=	number	of	cycles	per	second.
• 20	cycles	in	.02	seconds	=	1000	cycles/second	=	1000	Hz



Complex	Waves:	100Hz+1000Hz

Time (s)
0 0.05

œ0.9654

0.99

0



Spectrum

100 1000Frequency	in	Hz

Am
pl
itu

de

Frequency	components	(100	and	1000	Hz)	on	x-axis



Part	of	[ae]	waveform	from	“had”

§ Note	complex	wave	repeating	nine	times	in	figure
§ Plus	smaller	waves	which	repeats	4	times	for	every	large	

pattern
§ Large	wave	has	frequency	of	250	Hz	(9	times	in	.036	seconds)
§ Small	wave	roughly	4	times	this,	or	roughly	1000	Hz
§ Two	little	tiny	waves	on	top	of	peak	of	1000	Hz	waves



Spectrum	of	an	Actual	Soundwave

Frequency (Hz)
0 5000

0

20

40



Back	to	Spectra
§ Spectrum	represents	these	freq	components
§ Computed	by	Fourier	transform,	algorithm	which	separates	

out	each	frequency	component	of	wave.	

§ x-axis	shows	frequency,	y-axis	shows	magnitude	(in	decibels,	
a	log	measure	of	amplitude)

§ Peaks	at	930	Hz,	1860	Hz,	and	3020	Hz.



Source	/	Channel



Why	these	Peaks?	

§ Articulation	process:
§ The	vocal	cord	vibrations	

create	harmonics
§ The	mouth	is	an	amplifier
§ Depending	on	shape	of	

mouth,	some	harmonics	are	
amplified	more	than	others



Figures	from	Ratree Wayland

A3

A4

A2

C4 (middle C)

C3

F#3

F#2

Vowel	[i]	at	increasing	pitches



Resonances	of	the	Vocal	Tract

§ The	human	vocal	tract	as	an	open	tube:

§ Air	in	a	tube	of	a	given	length	will	tend	
to	vibrate	at	resonance	frequency	of	
tube.	

§ Constraint:	Pressure	differential	should	
be	maximal	at	(closed)	glottal	end	and	
minimal	at	(open)	lip	end.

Closed	end Open	end

Length	17.5	cm.

Figure	from	W.	Barry



From	Sundberg



Computing	the	3	Formants	of	Schwa

§ Let	the	length	of	the	tube	be	L
§ F1 =	c/l1 =	c/(4L)	=	35,000/4*17.5	=	500Hz
§ F2 =	c/l2 =	c/(4/3L)	=	3c/4L	=	3*35,000/4*17.5	=	1500Hz
§ F3 =	c/l3 =	c/(4/5L)	=	5c/4L	=	5*35,000/4*17.5	=	2500Hz

§ So	we	expect	a	neutral	vowel	to	have	3	resonances	at	500,	
1500,	and	2500	Hz

§ These	vowel	resonances	are	called	formants



From
Mark
Liberman



Seeing	Formants:	the	Spectrogram



Vowel	Space



Spectrograms



How	to	Read	Spectrograms

§ [bab]:	closure	of	lips	lowers	all	formants:	so	rapid		increase	in	
all	formants	at	beginning	of	"bab”

§ [dad]:	first	formant	increases,	but	F2	and	F3	slight	fall
§ [gag]:	F2	and	F3	come	together:	this	is	a	characteristic		of	

velars.	Formant	transitions	take	longer	in	velars	than	in	
alveolars or	labials

From	Ladefoged “A	Course	in	Phonetics”



“She	came	back	and	started	again”

1.		lots	of	high-freq	energy
3.		closure	for	k
4.		burst	of	aspiration	for	k
5.		ey vowel;	faint	1100	Hz	formant	is	nasalization
6.		bilabial	nasal
7.		short	b	closure,	voicing	barely	visible.	
8.		ae;	note	upward	transitions	after	bilabial	stop	at	beginning
9.		note	F2	and	F3	coming	together	for	"k"

From	Ladefoged “A	Course	in	Phonetics”





Deriving	Schwa

§ Reminder	of	basic	facts	about	sound	waves
§ f	=	c/l
§ c	=	speed	of	sound	(approx	35,000	cm/sec)
§ A	sound	with	l=10	meters:	f	=	35	Hz	(35,000/1000)
§ A	sound	with	l=2	centimeters:	f	=	17,500	Hz	(35,000/2)



American	English	Vowel	Space

FRONT BACK

HIGH

LOW

iy

ih

eh

ae aa

ao

uw

uh

ah
ax

ix ux

Figures	from	Jennifer	Venditti,	H.	T.	Bunnell



Dialect	Issues

§ Speech	varies	from	dialect	to	
dialect	(examples	are	American	
vs.	British	English)
§ Syntactic	(“I	could”	vs.	“I	could	

do”)
§ Lexical	(“elevator”	vs.	“lift”)
§ Phonological
§ Phonetic

§ Mismatch	between	training	and	
testing	dialects	can	cause	a	large	
increase	in	error	rate

American British

al
l

ol
d


